Multivariate copulas with hairpin support

نویسندگان

  • Fabrizio Durante
  • Juan Fernández-Sánchez
  • Wolfgang Trutschnig
چکیده

Program: 1. Fabrizio Durante (Free University of Bozen–Bolzano, Italy) Multivariate copulas with hairpin support 2. Piotr Jaworski (University of Warsaw, Poland) Copulas of self–similar Ito diffusions 3. Franco Pellerey (Politecnico di Torino, Italy) Univariate stochastic orders and joint stochastic orders: conditions on the copula for mutual relationships 4. Giovanni Puccetti (University of Firenze, Italy) General extremal dependence concepts 5. Gianfausto Salvadori ( Università del Salento, Italy) Design–risk and structural–risk in environmental applications: a multivariate approach 6. Juan Fernández Sánchez (Universidad de Almeŕıa, Spain) Copulas with fractal support 7. Wolfgang Trutschnig (University Salzburg, Austria) Copulas from the Markov kernel perspective

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulating Exchangeable Multivariate Archimedean Copulas and its Applications

Multivariate exchangeable Archimedean copulas are one of the most popular classes of copulas that are used in actuarial science and finance for modelling risk dependencies and for using them to quantify the magnitude of tail dependence. Owing to the increase in popularity of copulas to measure dependent risks, generating multivariate copulas has become a very crucial exercise. Current methods f...

متن کامل

Some Results on Convexity and Concavity of Multivariate Copulas

This paper provides some results on different types of convexity and concavity in the class of multivariate copulas. We also study their properties and provide several examples to illustrate our results.

متن کامل

The Frailty and the Archimedean Structure of the General Multivariate Pareto Distributions

The mixture property of the general multivariate Pareto MP distributions has been studied by Yeh (2004a). Arnold (1996) mentioned that any mixing distribution with support (0,∞) is a candidate for a frailty model. This fact drives Yeh to study the frailty structure of the MP distributions. It is discerned that the MP distributions is in the one-parameter kvariate Clayton family with k-variate A...

متن کامل

A class of multivariate copulas with bivariate Fréchet marginal copulas

In this paper, we present a class of multivariate copulas whose two-dimensional marginals belong to the family of bivariate Fréchet copulas. The coordinates of a random vector distributed as one of these copulas are conditionally independent.Weprove that thesemultivariate copulas are uniquely determined by their two-dimensional marginal copulas. Some other properties for thesemultivariate copul...

متن کامل

A class of multivariate copulas based on products of bivariate copulas

Copulas are a useful tool to model multivariate distributions. While there exist various families of bivariate copulas, much less work has been done when the dimension is higher. We propose a class of multivariate copulas based on products of transformed bivariate copulas. The analytical forms of the copulas within this class allow to naturally associate a graphical structure which helps to vis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2014